the relative volumes of damaged endotheliocytes, the density of microvessels per 1 mm² of the tissue of the subject were determined on the micropreparations of the prostate body. Quantitative indicators were processed statistically.

**Results and Discussion.** It was established that the morphometric parameters of the venous vessels of the prostate changed significantly during long-term ethanol intoxication. It was found that with long-term ethanol intoxication in laboratory sexually mature white male rats, a pronounced structural rearrangement of the venous vessels of the prostate occurs, which is characterized by thinning of the vein walls, expansion of their lumen, venous congestion, atrophic processes in the intima, apoptotic, dystrophic and necrobiotic changes of endotheliocytes, endothelial dysfunction, hypoxia, dystrophic-necrotic changes in cells and stromal structures, infiltration and sclerosis. The degree of structural rearrangement of the venous vessels of the prostate dominates in experimental animals of the older age group.

**Key words:** prostate, venous bed, ethanol intoxication, age.

**ORCID and contributionship / ORCID кожного автора та їх внесок до статті:**
Hnatjuk M. S.: 0000-0002-4110-5568 ADEF
Nesteruk S. O.: 0000-0003-1573-4480 ADF
Tatarchuk L. V.: 0000-0002-4678-4205 BCE
Monastyrska N. Ja.: 0000-0003-2799-0895 ACD

**Conflict of interest / Конфлікт інтересів:**
The authors declare no conflict of interest. / Автори заявляють про відсутність конфлікту інтересів.

**Corresponding author / Адреса для кореспонденції:**
Hnatjuk Mykhaylo Stepanovych / Гнатюк Михайло Степанович
I. Horbachevsky Ternopil National Medical University of the Ministry of Health of Ukraine / Тернопільський національний медичний університет імені І. Я. Горбачевського МОЗ України
Ukraine, 46001, Ternopil, 1 Maydan Voli str. / Адреса: Україна, 46001, м. Тернопіль, вул. Майдан Волі 1
Tel.: +380674765285 / Тел.: +380674765285
E-mail: hnatjuk@tdmu.edu.ua

Received 23.11.2022 / Стаття надійшла 23.11.2022 року
Accepted 03.05.2023 / Стаття прийнята до друку 03.05.2023 року

**DOI** 10.29254/2077-4214-2023-2-169-374-380
**UDC** 591.483+616-001+612.014.46+616.441-008.64+616-08+591.169.1

**MORPHOLOGICAL CHANGES IN THE PERIPHERAL NERVES IN TRAUMA, MERCURY INTOXICATION, HYPOTHYROIDISM, AND THEIR CORRECTION**

1Bogomolets National Medical University (Kyiv, Ukraine)
2Ivano-Frankivsk National Medical University (Ivano-Frankivsk, Ukraine)

**tkotyk@ifnmu.edu.ua**

Traumatic peripheral nerve injury (PNI) significantly impacts patients’ quality of life, and its treatment necessitates a multidisciplinary approach. Additionally, different non-traumatic factors such as environmental toxics and endocrine disorders can significantly affect the regenerative capacity of damaged nerves.

The aim of this study was to assess the morphological changes in the recovery of the damaged peripheral nerve, considering the impact of environmental heavy metal intoxication (mercury) and hypothyroidism, including their treatment.

The study involved a total of 90 white rats divided into three groups, each group further subdivided into subgroups (a and b). All rats underwent surgical cutting of the sciatic nerve. Subgroup la underwent sciatic nerve injury alone, while subgroups Ila and IIla were additionally subjected to experimental mercurialism and hypothyroidism, respectively. Subgroups Ib, IIb, and IIIb received treatments with Cerebrolysin, Thiotriazoline, and L-Thyroxine+Miacalcic, respectively, in addition to the traumatic nerve injury and experimental influences. The damaged nerves were then examined using both light and electron microscopy assessments.

The findings of the study suggest that there are general patterns of degeneration and regeneration of the damaged peripheral nerve in the context of nootropic administration, experimental mercury intoxication, hypothyroidism, and their correction. In all groups, degeneration was observed, but a noteworthy delay in degenerative processes was observed specifically in cases involving delayed surgical nerve connection, mercurialism, and hypothyroidism, possibly due to the inhibition of Schwann cells. This led to a delayed regeneration process. However, the regeneration of the damaged nerve was significantly accelerated when the experimental pathological condition was corrected.

**Key words:** peripheral nerve, trauma, mercurialism, hypothyroidism, correction, regeneration.
The experimental study involved 90 white rats (150-200 g) and was carried out in accordance with the “European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes” (Strasbourg, 2005) and the “General Ethical Principles of Animal Experiments” (Kyiv, 2013). The animals were kept in standard laboratory conditions and received water ad libitum.

The rats were divided into 3 groups:
• Group I (30 animals; divided into subgroup Ia (Control) and subgroup Ib (Control + Cerebrolysin), with 15 rats per subgroup). The left sciatic nerve was cut in the middle third, followed by surgical hemostasis and wound suturing. After 10 days, a repeated surgical procedure was performed to connect the ends of the severed sciatic nerve using epineural suturing. Subgroup Ib received intraperitoneal administration of Cerebrolysin (0.02 mg/kg, for 21 consecutive days; Ebewe, Austria) starting from the third day of surgical nerve reconstruction. Subgroup Ia received no additional treatment.
• Group II (30 animals; divided into subgroup Ila (Hg-Control) and subgroup IIb (Hg + Thiotriazoline), with 15 rats per subgroup). The animals were initially subjected to experimental mercurialism by intraperitoneal administration of HgCl₂ (1/100 LD₅₀) for a duration of 2 weeks (Hg-Control). Then, the left sciatic nerve was surgically cut, and its ends were fixed together by sutures, maintaining a distance of 1-2 mm between the ends. Subgroup Ila received no additional treatment, while subgroup IIb received intraperitoneal administration of 100 mg/kg of a 2.5% Thiotriazoline solution for a duration of 14 days.
• Group III (30 animals; divided into subgroup IIIa (Hypothyroidism-Control) and subgroup IIIb (Hypothyroidism + Thyroxine + Micacalcic), with 15 rats per subgroup). In both subgroups, the animals underwent experimental hypothyroidism through thyroidecotomy, followed by laboratory control of serum thyroxine levels [14]. Starting from day 3, the rats in subgroup IIIb were administered L-Thyroxine (10 μg/kg orally; Farmak, Ukraine) and Micacalcic (1.0 MU/kg intramuscularly, every other day; Novartis, Switzerland). Subgroup IIIa received no additional treatment. After 100 days of the experiment, the left sciatic nerve was cut, followed by surgical hemostasis and wound suturing.

Tissue sample collection and microscopy assessment.
Six weeks after experimental nerve damage (surgical cutting of the sciatic nerve), the rats in all groups were euthanized using an overdose of sodium thiopental. The damaged sciatic nerves were collected for further assessment.

For light microscopy analysis, the routine silver impregnation staining procedure was applied.
For electron microscopy analysis, the tissue sample was fixed in 2.5% glutar-aldehyde with post-fixation in 1% osmium tetroxide. Semithin and ultrathin slides were prepared according to routine procedures.

Research results and their discussion.
In subgroup Ib (Control+Cerebrolysin), hypo – and hyperimpregnation of single nerve fibers were observed in the proximal ends of damaged nerves, that suggested the possibility of retrograde regeneration. Axonal fragmentation was preserved and visualized in different fields of view. The axons were identifiable with wavy contours. These characteristics were less pronounced as compared to subgroup Ia (Control). Regenerative neuroma formation with connective tissue cells and blood vessels ar-
and arranged in groups forming the exoskeleton and neurofilaments in most fibers were well-developed transparent, lacking crystals and granules. Microtubules visualized in the axoplasm. The mitochondrial matrix appeared into tight contact with myelin sheaths. Undamaged mitochondrial appearance, with their axolemma coming to growth cones at their tips. Thus, regenerative neurons were characterized by more extensive regenerative processes, specifically the repair of stromal components and myelination. A complete and overall regeneration of endoneurium was observed, which led to the regeneration of newly formed nerve fibers and accelerated the functional recovery of tissues and organs that experienced denervation due to modeling sciatic nerve injury [15]. Such morphological changes indicating positive dynamics of regenerative processes in the peripheral nerves when using nootropics were also observed in other studies [16, 17].

In subgroup Ib (Hg + Thiotriazoline), nerve fibers of the proximal segment of the sciatic nerve exhibited slight signs of irritation. Some nerve fibers were characterized by a mild swelling and wavy contours. However, it should be noted that fragmented axons were rare as compared to subgroup IIa (Hg-Control). The areas with poorly impregnated tissue appeared less pronounced; visually, the connective tissue of the regenerative neuroma showed growth, accompanied by numerous blood vessels and nerve fibers growing through the scar. Fibroblasts were the most numerous connective tissue cells. Individual thick bundles of collagen fibers were visualized. The axial cylinders showed a more organized arrangement as compared to subgroup IIa (Hg-Control); although some of them exhibited transverse motion. A few axons appeared with growth cones at their tips. Thus, regenerative neroma was characterized by a greater degree of connective tissue differentiation and an increase in the number of nerve fibers growing through it and displaying a higher level of organization and relatively orderly arrangement (fig. 3).

In subgroup Ib (Hg + Thiotriazoline), nerve fibers of the distal segment of the damaged nerve also showed minor signs of irritation, but an increase in their quantity and diameter with preserved wavy contours was visualized. Electron microscopy assessment revealed numerous Schwann cells with no morphological signs of damage. The morphology of the Golgi apparatus, endoplasmic reticulum, and lysosomes showed no significant alterations. However, the cisterns of the endoplasmic reticulum exhibited slight expansion. The number of structurally intact nerve fibers increased due to the activation of macrophages and Schwann cells [18]. Some Schwann cells were involved in the formation of new nerve fibers. Newly formed nerve fibers still exhibiting pathological characteristics were mostly arranged in groups, exhibited various shapes and sizes; however, signs of their regeneration were observed. Most of those fibers appeared...
with an axon containing large numbers of microtubules and neurofilaments; additionally, mitochondria exhibiting well-defined cristae were visualized. No splitting of the myelin lamellae was observed in the myelin sheath, although wavy contours of some fibers were preserved (fig. 4). The number of collagen fibers with no signs of depolymerization increased. The rough endoplasmic reticulum showing no signs of irritation was well visualized in fibroblasts indicating their functional activity. The numbers of blood capillaries with electron dense endothelium increased.

It can be assumed that, on the background of mercury intoxication and its correction by Thiotriazoline, the morphological changes in the peripheral nerve were characterized by slight dystrophic damage [19]. Therefore, positive changes were observed in the proximal and distal segments and the area of regenerating neuroma of the sciatic nerve in animals of subgroup IIb (Hg + Thiotriazoline). A significant reduction in nerve fiber swelling was seen, with a reduction in destructive processes. Both newly formed nerve fiber density and myelin sheath thickness increased. At this stage of study, some nerve fibers exhibiting signs of irritation such as wavy contours and uneven impregnation were still present; however, no axonal fragmentation was an indicative of recovery. Thiotriazoline has a positive effect on Schwann cells, thereby accelerating the processes of myelination and promoting the recovery of the damaged sciatic nerve [20].

In subgroup IIIa (Hypothyroidism-Control), significant numbers of degenerative ovoids were observed in the distal segment of the sciatic nerve at the light microscopic level. The interstitial space appeared noticeably enlarged due to edema and cell debris. Some nerve fibers were fragmented, with unclear wavy contours. Nerve fiber density in this section of the nerve decreased significantly (fig. 5).

Ultrastructural examination of the distal segment of the sciatic nerve revealed vacuolated remnants of myelin sheaths exhibiting different stages of degradation in the cytoplasm of Schwann cells (fig. 6).

Active degenerative changes in the distal segment of the nerve were accompanied by regenerative changes manifested by the formation of non-myelinated fibers. They were arranged in clusters, displayed variations in their diameter, and contained a significant number of lysosomes, secretory vesicles, electron dense inclusions and a small quantity of neurofibrils and microtubules in the axoplasm.

Ultrastructural examination of the distal segment of the damaged sciatic nerve in subgroup IIIb (Hypothyroidism-Thyroxine-Miacalcic) revealed an increase in the number of nerve fibers alongside a reduction in the interstitial volume (fig. 7) as compared to subgroup IIIa (Hypothyroidism-Control).

Quality assessment of the sciatic nerve samples under study revealed a higher regenerative activity characterized by the formation of new nerve fibers in rats with hypothyroidism receiving correction as compared to animals with untreated hypothyroidism. Ultrastructural examination...
tion revealed a large number of clustered non-myelinated fibers exhibiting uneven contours and containing a significant number of vacuoles and electron dense inclusions in the axoplasm. Newly formed myelin fibers exhibited an incomplete myelin sheath, showing layering in localized areas or being dense, occasionally swollen, with enlarged periaxonal space and local invagination of myelin in axon (fig. 8). Newly formed myelin fibers with an intact myelin sheath and a normal axon, with no signs of pathological alterations, were observed in the field of view.

The regeneration of the damaged sciatic nerve in hypothyroidism (subgroup IIIa) exhibited a wave-shaped pattern similar to that observed in normal thyroid function (subgroup Ia). However, thyroid hormone deficiency significantly hindered that process [21]. The destruction and phagocytosis of primarily damaged nerve fibers altered new fiber formation; larger nerve fibers appeared predominantly aberrant and therefore, underwent simultaneous phagocytosis by Schwann cells, leading to the next stage of nerve regeneration, specifically repeated degeneration of newly formed atypical fibers. The sciatic nerve, on the background of Hypothyroidism + Thyroxine + Miacalcic (subgroup IIIb), underwent the phases of regeneration and degeneration faster, which was associated with no significant delay in the progression of degenerative changes, characteristic of the morphological alterations in the damaged nerve in hypothyroid rats (subgroup IIIa). The onset of regeneration was delayed due to low phagocytic activity and the absence of apoptosis in Schwann cells [22, 23]. Further destruction of damaged myelin fibers took place at a slower pace and had a distinct course which differed from the progression of degeneration in rats of subgroup Ia and subgroup IIIa.

Conclusions.

Based on the results, it can be concluded that there are common patterns of de – and regeneration of the damaged peripheral nerve in the context of nootropic administration, experimental mercury intoxication, hypothyroidism, and their correction. Although degeneration was evident in all groups, a noteworthy delay in degenerative processes was observed specifically in cases involving delayed surgical nerve connection, mercurialism, and hypothyroidism, possibly due to the inhibition of Schwann cells. As a result, regeneration was delayed, exhibiting a wave-shaped pattern due to the transition of Schwann cells from their phagocytic role to myelination. However, it should be noted that initiation of regeneration is significantly accelerated when the experimental pathological condition is corrected, leading to the regeneration of the damaged nerve.

Prospects for further research.

The data obtained can serve as a basis for developing the methods to improve the processes of peripheral nerve regeneration in clinical practice. The results of the study on the regeneration of the damaged sciatic nerve on the background of various complicating factors will broaden the understanding of both researchers and practicing physicians regarding the regenerative properties of nerve trunks and ways to influence these processes, thus stimulating further investigations.

References


Шляхом його перерізання з відтермінованим ушиванням усім щурам. Підгрупи ІІа та ІІІа додатково моде-
групи, кожна з яких складалася з підгруп «а» і «б». Травматичне ушкодження сідничого нерва моделювали
і ендокринної патології на регенеративну здатність периферичних нервів та розробити підґрунтя стратегій
умови їх корекції. Встановлення цих особливостей дозволить ідентифікувати потенційний вплив токсикантів
периферичних нервах після травми на тлі експериментальної інтоксикації ртуттю та гіпотиреозу, а також за
тичними формами тиреоїдних гормонів), які супроводжували регенерацію пошкодженого нерва, безумовно
процесів. Однак, корекція патологічних станів (ноотропами, антиоксидантами та цитопротекторами, синте
черевного відрізку та зони травми нерва. Є виражене розшарування та набряк ламел, дистрофічні зміни у
агрегатів при морфологічному дослідженні, виражена хвилястість контурів. При корекції тіотриазоліном
позитивний вплив на стромальні елементи нерва та мієлінізацію. Меркуріалізм зумовлює нерівномірність
тривалими функціональними обмеженнями та необхідністю реабілітації. Токсиканти навколишнього серед
цією нейролемоцитів, в результаті
чіткіше контурує мієлінова оболонка, нейролема та візуалізує органелі аксоплазми. Морфологічні

МОРФОЛОГІЯ / MORPHOLOGY

10. Ranahulova T. Non-Alcoholic Fatty Liver Disease and Hypothyroidism: Review of Clinical and Experimental Studies. Galician Medical
12. Bose I, Bali C, Biswas C. A comparative study of changes in nerve conduction velocity among subclinical hypothyroid patients and normal
14. Stechenko LO, Petrenko VA, Byk PL, Kuzian VR, Kufyntsa TV, vynakhidnyk: Natsional'nyy medychny universytet imeni 0.0.
Bohomi/l'sya, patentovlasnyk. Sposib modelyuvannya hipotyreozu u shchuriv. Patent Ukrainy № 27821. 2007 Lyst 12. [In Ukrainian].
15. Demidschuk AS. Morphological changes of rats after peripheral nerve injury and pharmacological correction in the early stages of research.
16. Sherifa AH. Cerebrolysin as a nerve growth factor for treatment of acquired peripheral nervous system diseases. Neural Regeneration
Research. 2011;6(18):1415-1420.
Research. 2019;14(8):1335. DOI: https://doi.org/10.4103/1673-5374.255510.
19. Chajkovskiy YuB, Sokureno LM, Lytus VI. Korektsiya eksperimental'nogo mikromercurializmu ta stan orhaniv nervovoyi systemy u
imnnoho zakrytyh xokz. Ukrains'kyi zhurnal sukhachyvnykh problem toksykolohiyi. 2011;5(55):64. [In Ukrainian].
20. Shamalo SM. Condition of peripheral nerve rats under micromercurialism in the early stages after injury. World of Medicine and Biology.
21. Barakat-Walter I, Kraftsk R. Stimulating effect of thyroid hormones in peripheral nerve regeneration: research history and future direction
23. Dovgan IM, Savosko SI, Savosko AO, Melnyk NO, Kuraieva IV, Bulgakova NV, Chaikovsky YB, Maznychenko AV. Experimental
unilateral intracerebral hemorrhage induces delayed bilateral neurodegeneration of sciatic nerve fibres in rats. Acta Neurobiol

ОСОБЛИВОСТІ МОРФОЛОГІЧНИХ ЗМІН ПЕРИФЕРИЧНИХ НЕРВІВ В УМОВАХ ТРАВМИ, ІНТОКСИКАЦІЇ РТУТТЮ, ГІПОТІРЕОЗІ І ЇХ КОРЕНЮ

Демидчук А. С., Щапало С. М., Котик Т. Л., Раскалей Т. Я., Раскалей В. Б., Попадинець О. Г., Токарук Н. С. Резюме. Вступ. Травматичні ушкодження периферичного нерва (ТУПН) займають вагоме місце серед травм в умовах довгого часу, так і в побуті, призводячи до значних ускладнень і знижуючи якість життя жертв.

Лікування ТУПН зазвичай комплексне та потребує мультидисциплінарного підходу, супроводжується тривалими функціональними обмеженнями та необхідністю реабілітації. Токсиканти навколишнього середовища, які активно діють в організмі, можуть впливає на процеси регенерації периферичних нервів, що зумовлює важливість вивчення дії токсикантів на ці процеси.

Мета даного дослідження - встановлення морфологічних особливостей регенераторних процесів у периферичних нервах після травми на тлі експериментальної інтоксикації ртуттю та гіпотиреозу, а також за шляхом дослідження саме цій загальній тематиці, стимулювати експериментальну інтоксикацію ртуттю та гіпотиреозу, відповідно. Підгрупи Iб, IIb та IIIb додатково

ОБЗОР І МЕТОДИ ДОСЛІДЖЕННЯ. Дослідження виконано на 90 білих щурах, які були розділені на три групи, кожна з яких складалася з підгруп по 10 особин.

Результати. Травматичне ураження супроводжується цитолічною перебудовою проксимального, дистального відрізків та зони травми нерва. Е виражені розшарування та набряк ламел, дистрофічні зміни у аксонах, цилідіях, нейролемі, та сполучночленниковим каркасом нерва. Застосування цереброілініза має позитивний вплив на процеси регенерації та розробити підґрунтя стратегії лікування таких ушкоджень.

Висновки. Встановлено загальні закономірності зв'язку між ТУПН, інтоксикації ртуттю та гіпотиреозу та результатами лікування.

Ключові слова: периферичний нерв, травма, меркуріалізм, гіпотиреоз, корекція, регенерація.
MORPHOLOGICAL CHANGES IN THE PERIPHERAL NERVES IN TRAUMA, MERCURY INTOXICATION, HYPOTHYROIDISM, AND THEIR CORRECTION

Demydchuk A. S., Shamalo S. M., Kotyk T. L., Raskaliev T. Ya., Raskaliev V. B., Popadynets O. H., Tokaruk N. S.

Abstract. Introduction. Traumatic peripheral nerve injury (PNI) is a common occurrence in both military and civilian populations, leading to significant complications and reducing patients’ quality of life. The treatment of PNI requires a multidisciplinary approach due to its complex nature and the potential for long-term functional limitations and rehabilitation needs. Environmental toxicants, such as mercury, have been implicated in the impairment of peripheral nerve regeneration and delay in functional recovery, highlighting the importance of considering occupational factors and their impact on nerve tissue. Endocrine disorders, particularly hypothyroidism, have significant influence on nervous tissue and can affect cognitive function and nerve conduction, emphasizing the need to address comorbidities in the management of PNI. Understanding the relationship between PNI, environmental toxicants, and endocrine disorders can contribute to the development of effective treatment strategies and improve outcomes for patients with PNI.

The aim of the study. This study aimed to investigate and compare the morphological changes in peripheral nerve recovery after trauma on the background of experimental mercury intoxication and hypothyroidism, including their treatment. By addressing this research gap, it will enable us to recognize the potential impact of occupational toxicants and endocrine pathology on the regenerative capacity and develop a sustainable background for developing effective treatment strategies and improving outcomes for PNI.

Object and research methods. The study involved a total of 90 white rats divided into three groups, each group further subdivided into subgroups (a and b). Traumatic PNI was simulated by surgical cutting of the sciatic nerve and delayed suturing in all rats. Subgroups Ia and IIa were additionally subjected to experimental mercurialism and hypothyroidism, respectively. Subgroups Ib, IIb, and IIIb were administered additional treatments with Cerebrolysin, Thiotriazoline, and L-Thyroxine+Miacalcic, respectively. The morphological study included light microscopy and ultrastructural analysis.

Results. Traumatic injury was accompanied by structural remodeling of the proximal and distal segments and the area of nerve injury. Significant splitting and swelling of the myelin lamellae, dystrophic changes in axons, neurolemma, and connective tissue framework of the nerve were observed. Cerebrolysin had a positive effect on the stromal components and myelination. Mercurialism caused uneven impregnation during morphological examination, leading to pronounced waviness of the contours. Correction with Thiotriazoline resulted in noticeable positive changes in the structure of Schwann cells, which, in turn, improved the processes of myelination. Hypothyroidism was accompanied by the inhibition of degenerative changes, which slowed down the regenerative processes in the damaged nerve. Correction with synthetic forms of thyroid hormones activated Schwann cells, resulting in clearer delineation of the myelin sheath, neurolemma and visualization of axoplasmic organelles.

Conclusions. General patterns of de – and regeneration of the damaged peripheral nerve in the context of nootropic administration, experimental mercury intoxication, hypothyroidism, and their correction, were identified. Degeneration was significantly postponed in all investigated factors, possibly due to the inhibition of Schwann cells. Thus, it resulted in delayed regeneration. However, it should be noted that initiation of regeneration is significantly accelerated when the experimental pathological condition is corrected (by nootropes, antioxidants and cytoprotectors, synthetic forms of thyroid hormones).

Key words: peripheral nerve, trauma, mercurialism, hypothyroidism, correction, regeneration.

ORCID and contributionship:
Demydchuk A. S.: 0000-0001-8074-2829 ABF
Shamalo S. M.: 0000-0003-1809-1476 AB
Kotyk T. L.: 0000-0002-3585-2356 DEF
Raskaliev T. Ya.: 0000-0002-6737-2381 AB
Raskaliev V. B.: 0000-0002-5240-6278 RF
Popadynets O. H.: 0000-0002-2093-5984 AE
Tokaruk N. S.: 0000-0003-1404-7857 RD

Conflict of interest:
The authors declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Corresponding author
Kotyk Taras Lyubomyrovych
Ivano-Frankivsk National Medical University
Ukraine, 76000, Ivano-Frankivsk, 2 Halytska str.
Tel.: +380978226148
E-mail: tkotyk@ifnmu.edu.ua

A – Work concept and design, B – Data collection and analysis, C – Responsibility for statistical analysis, D – Writing the article, E – Critical review, F – Final approval of the article.

Received 22.11.2022
Accepted 04.05.2023